Power and Energy Meter

GS 77C01E01－01E

Overview

This panel－mounted power and energy meter with a large，three－row LED display integrates all the measur－ ing functions required for power management in locations such as factories and buildings into a single unit
With the objective of working toward the preservation of the global environment by saving energy and performing equipment maintenance，the PR300 is designed to display and output the energy of various types of electrical equipment．

Features

－Saves on cost，wiring，and space Integrates a wide selection of functions for measuring things like energy（active，regenerative，reactive，and apparent）， power（active，regenerative，reactive，and apparent）， voltage，current，frequency，and power factor into a single unit．
－Employs a large，three－row LED display
Capable of displaying three－phase current and voltage simultaneously，and the measurement items you assign．
－Analog output function
Equipped with a transducer function for power（active， regenerative，reactive，and apparent），voltage，current， frequency，and power factor（ 4 to 20 mA DC ）．
－Demand measurement
Measures the average power and current within a specified period．It also allows you to set up alarm points to output alarms．
－Equipped with a multitude of functions Enables measurement of the maximum and minimum values of voltage and the maximum value of current，as well as，for example，the use of external digital input to measure energy at arbitrary times．
－Pulse output Capable of outputting pulses proportional to energy（one measurement item from active，regenerative，reactive，and apparent energy）．
－Converts the phase and wire system of an AC power system and an input voltage circuit to a universal format
The PR300 can handle from the single－phase two－wire system and single－phase three－wire system to the three－ phase three－wire system and three－phase four－wire system， and also universally cope with input voltage circuits up to 600 V AC．
－Compatible with ANSI 4－inch round form size and DIN 96－square instrument size
The ability to attach and detach JIS／ANSI－mounting kit makes the PR300 compatible with panel cutouts of ANSI 4－ inch round form，JIS 110－square instrument size，and DIN 96 －square instrument size．
－Standard equipped with an RS－485 communication function and capable of Ethernet communication
－Compatible with overseas requirements
Power line indications A, B ，and C provided for overseas use，in addition to R, S ，and T

Model and Suffix Codes

PR300－ロロロロロ－ロロ－0

Model
Phase and wire system
3：Universal three－phase three－wire system （single－phase two－wire，single－phase three－wire， and three－phase three－wire systems）
4：Universal three－phase four－wire system （single－phase two－wire，single－phase three－wire，three－phase three－wire，and three－phase four－wire systems）
5：Three－phase four－wire system （2．5 element）＊${ }^{\star 1}$

Input voltage／input current
1：Universal voltage input＊2 （ $150 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$ ）／ 1 A AC
2：Universal voltage input＊2 （ $150 \mathrm{~V}, 300 \mathrm{~V}, 600 \mathrm{~V}$ ）／ 5 A AC
Additional input and output function
0 ： 1 digital input
1： 1 digital input， 1 analog output
2： 1 digital input， 1 pulse output
3： 1 digital input， 1 analog output， 1 pulse output
Communication function
0：RS－485 communication
3：RS－485 communication，Ethernet communication＊3
Optional measuring function
0：None
3：Demand measurement（1 demand alarm output）
Power supply
6： $100-240$ V AC $\pm 10 \%(50 / 60 \mathrm{~Hz})$ or $130-300 \mathrm{~V}$ DC $\pm 15 \%$
Phase indication format
A：A，B，and C indications
R ：R，S，and T indications
＊1 Can be used only when the voltage is in a state of equilibrium The phase and wire system cannot be changed．
＊2 Set the voltage range（ $150 \mathrm{~V}, 300 \mathrm{~V}$ ，or 600 V ）according to the rated input voltage to be measured．（Refer to＂Rated Input Voltage＂of the Input Specifications on page 6．）
＊3 For Ethernet communication，the RS－485 communication interface is exclusively for the Ethernet－serial gateway function．

■ Ordering Information

Specify the model and suffix codes． Example：PR300－31000－6A－0

Measuring Functions

Measurement item		Single-phase two-wire system	Single-phase three-wire system	Three-phase three-wire system	Three-phase four-wire system	Three-phase four-wire system (2.5 element) *3	Unit and symbol	Remarks
Active energy (+)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	kWh, MWh	
Active energy (-)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-kWh, -MWh	Regenerative energy
Reactive energy (+) *1		\checkmark	\checkmark	\checkmark	\checkmark	* 4	kvarh, Mvarh	LAG: +
Reactive energy (-) *1		\checkmark	\checkmark	\checkmark	\checkmark	*4	-kvarh, -Mvarh	LEAD: -
Apparent energy *1		\checkmark	\checkmark	\checkmark	\checkmark	*4	kVAh, MVAh	
Optional active energy *1		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Wh	
Active power	Instantaneous Maximum Minimum	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	W, kW, MW	
Reactive power	$\begin{array}{\|c} \hline \text { Instantaneous } \\ \hline \text { Maximum } \\ \hline \text { Minimum } \\ \hline \end{array}$	\checkmark	\checkmark	\checkmark	\checkmark	*4	var, kvar, Mvar	
Apparent power	Instantaneous Maximum Minimum	\checkmark	\checkmark	\checkmark	\checkmark	*4	VA, kVA, MVA	
Voltage-1	Instantaneous Maximum Minimum	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V, kV	
Voltage-2	Instantaneous Maximum Minimum	-	\checkmark	-	\checkmark	-	V, kV	
Voltage-3	Instantaneous Maximum Minimum	-	-	\checkmark	\checkmark	\checkmark	V, kV	
Current-1	$\begin{array}{\|c} \hline \text { Instantaneous } \\ \hline \text { Maximum } \\ \hline \end{array}$	\checkmark	\checkmark	\checkmark	\checkmark	*4	A, kA	
Current-2	$\begin{array}{\|c} \hline \text { Instantaneous } \\ \hline \text { Maximum } \\ \hline \end{array}$	-	\checkmark	-	\checkmark	-	A, kA	
Current-3	$\begin{array}{\|c\|} \hline \text { Instantaneous } \\ \hline \text { Maximum } \\ \hline \end{array}$	-	-	\checkmark	\checkmark	*4	A, kA	
Frequency	Instantaneous Maximum Minimum	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Hz	Calculated from the voltage-1
Power factor	Instantaneous Maximum Minimum	\checkmark	\checkmark	\checkmark	\checkmark	*4	$\operatorname{COS} \phi$	LAG: + LEAD: -
	Demand	\checkmark	\checkmark	\checkmark	\checkmark	*4	A, kA	
	Maximum	\checkmark	\checkmark	\checkmark	\checkmark	* 4	A, kA	
Demand current-2	Demand	-	\checkmark	-	\checkmark	-	A, kA	
	Maximum	-	\checkmark	-	\checkmark	-	A, kA	
$\stackrel{\text { ¢ }}{\stackrel{\circ}{0}}$	Demand	-	-	\checkmark	\checkmark	*4	A, kA	
	Maximum	-	-	\checkmark	\checkmark	*4	A, kA	
Demand power ${ }^{* 2}$	Demand	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	W, kW, MW	
	Maximum	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	W, kW, MW	

*1 Integrated low-cut power can be set for each energy.
Effective
Integrated low-cut power: This is a function for not integrating power less than a set value as energy.
The setting range of integrated low-cut power is 0.05 to 20.00% of the rated power (initial value: 0.05%).
*2 Either demand power or demand current can be set as a measurement item.
*3 Can be used only when the voltage is in a state of equilibrium.
*4 Can be measured only when the current is in a state of equilibrium.

- Optional integrating function

Power is integrated while a control signal for optional integration is on.
When the control signal is switched from off to on, the optional integrated value indication is reset and integration starts. (The integrated value prior to the reset is held in a register.) The integrated value cannot be guaranteed in the event of a power failure occurring during integration.

- Demand measurement (when demand measurement is specified)

The PR300 measures average power or average current within a set demand period.
The maximum demand value for the demand measuring time is held until the power is turned off, remote reset is executed, or the next demand measurement is started.

Item	Setting Range	Resolution	Initial Value	Remarks
Demand power/current	Active power, current	-	Active power	
Demand period	1 to 60 minutes (Demand alarm mask time to 60 minutes)	1 minute	30 minutes	Demand alarm mask time \leqq Demand period
Demand alarm mask time*	1 minute to length of demand period	1 minute	1 minute	
Demand power alarm point	1 to 1000 kW	1 kW	100 kW	When demand power is selected
Demand current alarm point	1 to 1000 A	1 A	100 A	When demand current is selected
Alarm release function	Automatic release and manual release	-	Automatic release	
Data update interval	10 seconds	-	-	

* This is the time from the start of the demand period to the set time in which no judgment is made for the alarm (alarm masked). During the alarm mask time, no maximum demand value is updated and no alarm is output.

Display and Operation Specifications

(1)

Measured
Value Display

5-digit, 3-row, 7-segment LED display
Display color: red
Measured Value display:

*1: Without sign, but with a decimal point
*2: With a sign and a decimal point ("+" is not indicated). Regenerative power (energy) always shows "-" negative indication. The position of a decimal point differs depending on the primary rated power, VT ratio, and CT ratio
*3: "MAX" lights up for the maximum value and "MIN" lights up for the minimum value.
*4: "MAX" lights up for the maximum value.
Measured Value screen:
Display pattern: The measurement items you want to display are assigned to each of the upper, middle, and lower displays to provide indications using three display rows as one pattern. Up to eight display patterns can be set The initial values are as shown in the following table. (Combinations other than those shown in the following table are also available if the parameters are set.)
Number of display patterns: Can be set in the range of 1 to 8 . Pressing the SET/ENT key switches the display from "display pattern-1," "display pattern-2," and so on in order according to the number of patterns set. The initial value is "1" and only display pattern-1 is displayed when this value is set.

	Display Pattern-1	Display Pattern-2	Display Pattern-3	Display Pattern-4	Display Pattern-5	Display Pattern-6	Display Pattern-7	Display Pattern-8
Upper display	Current (Phase switch indication)	Active power	Active energy	Current-1	Voltage-1	Current (Phase switch indication)	Current (Phase switch indication)*	Active power

<Continued on the following page>

* The display of current (phase switch indication) is switched between current-1, current-2, and current-3 each time the SEL key is pressed. The display of voltage (phase switch indication) is switched between voltage-1, voltage-2, and voltage-3 each time the SEL key is pressed.

		VT ratio/CT ratio: If the VT ratio and CT ratio are set, input to the PR300 is displayed after converting it to the primary input value before VT or CT. The VT and CT ratios can be set via communication or using the operation keys. VT ratio setting range: 1 to 6000* CT ratio setting range: 0.05 to 32000^{*} * Set the VT ratio and CT ratio so that [secondary rated power] \times [VT ratio] \times [CT ratio] is smaller than 10 GW .						
(2)	Unit Lamps	The relevant unit lamp lights up according to a measurement item and measured value. Display color: red						
(3)	MAX and MIN Lamps	Either the MAX or MIN lamp lights up when a maximum or minimum measured value is displayed. Display color: red						
(4)	Phase Indication Lamps	Indicate the phase to which the measured value corresponds. (The A, B, and C indications or R, S, and T indications should be specified in accordance with the suffix code.) Display color: red						
		Phase and Wire System	Voltage-1	Voltage-2	Voltage-3	Current-1	Current-2	Current-3
		Single-phase two-wire system	A (R)			A (R)		
		Single-phase three-wire system	A, B (R, S)	B, C (S, T)		A (R)	C (T)	
		Three-phase three-wire system	A, B (R, S)		B, C (S, T)	A (R)		C (T)
		Three-phase four-wire system	A (R)	B (S)	C (T)	A (R)	B (S)	C (T)
		Three-phase four-wire system (2.5 element)	A (R)	-	C (T)	A (R)*	-	C (T)*
		* Can be measured only when the current is in a state of equilibrium.						
(5)	Power Lamp	Lights up when power is supplied. Blinks (4 times/sec) until it returns to normal when the communication error occurs. Display color: green						
(6)	Communication Lamp	Blinks during communication (RS-485 or Ethernet). Display color: green						
(7)	Pulse Output Lamp	Lights up when output is produced during pulse output, and goes out when no output is produced. Display color: green						
(8)	Demand Alarm Lamp	If a demand value exceeds the demand alarm point at a time other than during the alarm mask time, the OVER lamp lights up to indicate the occurrence of an alarm. Display color: red						
(9)	Phase and Wire System Lamps	The lamps of the phase and wire system that have been set light up. Display color: green						
(10)	Input Range Lamps	The input voltage range ($150 \mathrm{~V}, 300 \mathrm{~V}$, or 600 V) and input current range (1 A or 5 A) that have been set light up. Display color: green						
(11)	DEMAND Lamp	Lights up when a demand value is displayed. Display color: red						
(12)	Operation Keys	Used to switch measured value display patterns. This key is also used for setting parameters.						
		Used to move the display digit during energy indication. This key is also used for setting parameters.						
		Used to display the maximum or minimum measured value. These keys are also used for setting parameters.						
		Used to switch phase indications when the PR300 displays a voltage or current for which phase indication can be changed. (Phase switch indication is not available for single-phase two-wire system.) This key is also used for setting parameters.						
		Used to start/stop demand measurement. The lamp in the key lights up during demand measurement. Display color: green						
Indicator-out Mode Setting		This function turns off LEDs after a certain time elapses, with the exception of the power lamp (LED). The ON/OFF setting of the indicator-out mode function and the wait time before entering the indicator-out mode can be set using the operation keys. (Cannot be set via communication.) Indicator-out mode: ON/OFF (initial value: OFF) Indicator-out mode wait time: 1 to 60 minutes (resolution: 1 minute) (initial value: 10 minutes)						
$\begin{array}{\|l} \hline \text { A/D } \\ \text { Data } \end{array}$	Sampling Rate, Update Interval	A/D sampling rate: 4.8 kHz Internal measurement data: display/communication data is updated at an interval of 1 second or less						

Input Specifications

■ Digital Input Specifications

For digital input, either the optional integration start/stop or the demand alarm release can be used. If demand measurement is specified for an optional measuring function, digital input enters demand alarm release status. In this case, the optional integration start/stop cannot be used.

- Control signal for optional integration

Function	Starts or stops optional integration.
Number of Inputs	1
Input Signal	Voltage signal ON signal: 4.5 to 25 V DC OFF signal: within $\pm 1 \mathrm{~V}$ DC
Minimum ON time	50 ms

* A special order can be placed for no-voltage contact.

Note: Optional integration control is also possible via communication.
Once control is performed by digital input, only digital input-based control is available. Communication-based control is no longer possible until the power is turned off/on or remote reset is executed.

- Demand alarm release (when demand measurement is specified)

Function	Cancels demand alarm.
Number of Inputs	1
Input Signal	Voltage signal ON signal: 4.5 to 25 V DC OFF signal: within ± 1 V DC
Minimum ON time	50 ms

* A special order can be placed for no-voltage contact.

Analog Output Specifications (When Analog Output is Specified)

Pulse Output Specifications (When Pulse Output is Specified)

Function	Outputs pulses proportional to energy.
Measurement Item for Output	One item selected from active energy, regenerative energy, reactive energy (LEAD, LAG), and apparent energy
Number of Outputs	1
Output Signal	Open collector
Contact Capacity	30 V DC at 200 mA
Pulse Unit	0.1 to $5000.0 \mathrm{kWh} /$ pulse* (set in 100 Wh increments)
Setting Item	Measurement item for output, pulse unit, and ON pulse width Initial value: active energy (kWh), pulse unit: $1 \mathrm{kWh} /$ pulse, and ON pulse width: 50 ms
ON Pulse Width	Represents the ON time of pulses to be output. (Set the pulse width so that the maximum ON pulse width obtained by the following equation is not exceeded.) Within the range of 10 to $1270 \mathrm{~ms} \mathrm{(set} \mathrm{in} 10 \mathrm{~ms}$ increments) Maximum ON pulse width (ms) $=\frac{\text { Pulse unit }[\mathrm{kWh} / \mathrm{pulse}]^{*} \times 3600 \times 1000^{2}}{\text { Secondary rated power [W] } \times \mathrm{VT} \text { ratio } \times \mathrm{CT} \text { ratio } \times 1.2 \times 2}$

* The units are kvarh/pulse for reactive energy and kVAh/pulse for apparent energy.

Demand Alarm Output Specifications (When Demand Measurement is Specified)

Function	Outputs an alarm if the measured demand value exceeds the set demand alarm point.
Output Signal	Open collector
Contact Capacity	30 V DC at 200 mA
Alarm Release Function	Automatic release: Cancels the alarm if demand falls below the demand alarm point when the next measurement is performed. Manual release*: Holds the status of an alarm that occurred once. Cancels the alarm by digital input or the operation key, or via communication.

[^0]
Communication Specifications

- RS-485 communication

Example:

Function	RS-485 communication enables you to use the command/response method to read a variety of measurements and write various settings.
Protocol	PC link (with checksum, without checksum), Modbus (RTU, ASCII)
Transmission Distance	Approx. 1200 m maximum (when 24 AWG twisted-pair cable is used)
Connection Method	Multi-drop connection (a maximum of 32 units [including a higher-level device])
Station Number	01 to 99 (maximum number of units to be connected: 31 [number of units that can be connected to a PC etc.]) (Setting range: 01 to 31 is recommended)
Transmission Method	Half-duplex communication
Synchronization Method	Start-stop synchronization
Baud Rate	19200,9600, and 2400 bps
Xon/Xoff Control	None
Data Format	Data length
	Parity
	Stop bits, 7 bits

For details, refer to the user's manual for communications of each device to be connected.

Example of Connection Diagram

Notes:
The PR300 employs a two-wire system for RS-485 communication.
SG: The SG terminal is connected to match the signal level of the RS-485 communication line.
FG: All shielded wires must be connected and then grounded at one place to provide noise protection for RS-485 communication lines.

- Ethernet communication (when the Ethernet communication function is specified)

Example:

For details, refer to the user's manual for communications of each device to be connected.
Note: If Ethernet communication is used, the RS-485 communication interface is used specifically for the Ethernet-serial gateway function. Therefore, it is not possible for a higher-level device such as a PC to access the PR300 via the RS-485 communication interface.

Standard Performance

Accuracy Rating	Active energy/optional active energy (Wh)	$\pm 0.5 \%$ (EN60687 accuracy: class 0.5 or equivalent)
	Active power (W)	$\pm 0.5 \%$ of F.S.
	Voltage (V)	$\pm 0.25 \%$ of F.S. (voltage rms)
	Current (A)	$\pm 0.25 \%$ of F.S. (current rms)
	Frequency (Hz)	$\pm 0.5 \mathrm{~Hz}$
	Demand	$\pm 0.5 \%$
Calculation Accuracy	The value is calculated to an accuracy of ± 1 digit from the measured value for reactive energy, apparent energy, reactive power, apparent power, power factor or current*. * Current is only for the 2.5 element measurement.	
Backup upon Power Failure	The last integrated values obtained immediately before the power failure are held for active energy, regenerative energy, reactive energy, and apparent energy.	
Insulation Resistance	Between each of the voltage input, current input, power, ground, digital input, pulse output, analog output, RS485 communication output, Ethernet communication output, and alarm output terminals	$100 \mathrm{M} \Omega$ or more (at 500 V DC)
Withstand Voltage	Between each of the voltage input, current input, power, and ground terminals:	2500 V AC for 1 minute
	Between (the voltage input, current input, power and ground terminals) and the digital input, pulse output, analog output, alarm output, RS-485 communication output, and Ethernet communication output terminals:	2500 V AC for 1 minute
	Between each of the digital input, pulse output, analog output, alarm output, and (RS-485 communication output, Ethernet communication output) terminals:	1000 V AC for 1 minute
	Between the RS-485 communication output, and Ethernet communication output terminals:	500 V AC for 1 minute
Impulse Withstand Voltage	Between all of the voltage input, current input, and power terminals and the ground terminal: Between all of the output and ground terminals and all of the voltage input and current input terminals: $6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s}), 10$ times for positive and negative	
Effects of Magnetic Field	$400 \mathrm{~A} / \mathrm{m}$ or less Active power: $\pm 0.5 \%$ of F.S. Voltage/Current: $\pm 0.25 \%$ of F.S.	
Effects of Changes in Ambient Temperature	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}$ for a temperature change rate of $10^{\circ} \mathrm{C} / \mathrm{h}$ or less (when $0.05 \mathrm{In} \leq \mathrm{I} \leq \mathrm{I}$ max, power factor = 1) $\pm 0.05 \% /{ }^{\circ} \mathrm{C}$ for a temperature change rate of $10^{\circ} \mathrm{C} / \mathrm{h}$ or less (when $0.1 \mathrm{In} \leq \mathrm{I} \leq \mathrm{I}$ max, power factor = LAG 0.5) In: rated current, I: present current input	
Effects of Power Supply Voltage Variations	Active power: $\pm 0.25 \%$, Voltage/Current: $\pm 0.125 \%$ (for variations within the power supply operating range (when 0.01 In and power factor = 1)) In: rated current	
Effects of Input Frequency	Active power: $\pm 0.25 \%$, Voltage/Current: $\pm 0.125 \%$ (for variation of 45 to 65 Hz)	
Dustproof and Dripproof	IP5X	
Power Supply	100-240 V AC $\pm 10 \%$ ($50 / 60 \mathrm{~Hz}$) or 130-300 V DC $\pm 15 \%$	
Power Consumption	AC drive: 10 VA maximum, DC drive: 5 W maximum	

Safety and EMC Standards

Safety Standards	Compliant with IEC/EN61010-1 Under application for UL61010 approval		
Measurement category	600V CAT. III		
	Measurement Category	Description	Remarks
	CAT.I	Circuits not directly connected to main power supply	
	CAT.II	Circuits directly connected to low-voltage facility	Home-use equipment, portable tools, etc.
	CAT.III	Circuits in building facilities	Switchboards, circuit breakers, etc.
	CAT.IV	Supply sources to low-voltage facilities	Overhead lines, cable systems, etc.
Installation category	CAT. II		
	Pollution degree: 2 (IEC/EN61010-1)		
Rated measurement input	Voltage input: 600V AC (between terminals)		
	Current input: 600V AC (across ground)		
EMC-compliant Standards	Compliant with EN61326		
	During testing, the instrument continues to operate at a measurement accuracy within the range of $\pm 20 \%$.		

Environmental Conditions

Normal Operating Conditions
Normal Operating Conditions

Warm-up time	At least 30 minutes
Ambient temperature	0 to $50^{\circ} \mathrm{C}$ (reference temperature: $23 \pm 2^{\circ} \mathrm{C}$)
Temperature change	$10^{\circ} \mathrm{C} / \mathrm{h}$ or less
Ambient humidity	20 to $90 \% \mathrm{RH}$ (no condensation)
Magnetic field	$400 \mathrm{~A} / \mathrm{m}$ or less
Continuous vibration	10 to $60 \mathrm{~Hz}, 0.035 \mathrm{~mm}, 75$ minutes 60 to $150 \mathrm{~Hz}, 4.9 \mathrm{~m} / \mathrm{s}^{2}, 75$ minutes
Short-time vibration	$14.7 \mathrm{~m} / \mathrm{s}^{2}$ for 15 seconds or less
Shock	$98 \mathrm{~m} / \mathrm{s}^{2}$ or less (for shock time of 11 ms)
Mounting position	Vertical surface mounting only
Installation altitude	2000 m or less
Effects on Operating Conditions	
Effects of ambient temperature	Analog output: $\pm 0.05 \%$ of F.S. $/{ }^{\circ} \mathrm{C}$ or less
Effects on supply voltage variations	Analog output: $\pm 0.05 \%$ of F.S. $/{ }^{\circ} \mathrm{C}$ or less

Transport and Storage Conditions

Temperature	-20 to $70^{\circ} \mathrm{C}$
Humidity	5 to $95 \% \mathrm{RH}$ (no condensation)
Shock and dropping of package	90 cm (provided that an external packing box is used)

Initial Settings (Time of Shipment)

The PR300 has the following initial settings at the time of shipment. Settings can be modified after delivery.

	Setting Item	Initial Value
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\text { In }}{2} \end{aligned}$	Phase and wire system	Three-phase three-wire system (for three-phase three-wire system)
		Three-phase four-wire system (for three-phase four-wire system)
	Voltage range	300 V
	VT ratio	1
	CT ratio	1.00
	Integrated low-cut power	0.05 \%
	Station number	01
	Protocol	PC link with checksum
	Baud rate	9600 bps
	Parity	None
	Stop bit	1 bit
	Data length	8 bits
	IP address *1	192.168.1.1
	Port number *1	502
	Subnet mask *1	255.255.255.0
	Default gateway *1	0.0.0.0
	Measurement item for pulse output	Active energy (kWh)
	Pulse unit	$1 \mathrm{kWh} / \mathrm{pulse}$
	ON pulse width	50 ms
	Measurement item for analog output	Active power (W)
	Lower limit of scaling	50\% (0 W)
	Upper limit of scaling	100\% (maximum value of the input measuring range W)
	Demand power/current	Active power
	Demand period	30 minutes
	Demand alarm mask time	1 minute
	Demand power alarm point	100 kW
	Demand current alarm point	100 A
	Alarm release function	Automatic release
Other	Indicator-out mode/indicator-out mode wait time	Off/10 minutes

*1 When the Ethernet communication function is specified
*2 When pulse output is specified
*3 When analog output is specified
*4 When demand measurement is specified

Power Items and Equations

Phase and Wire Syatem	Apparent Power	Reactive Power (without using reactive power meter method)	Power Factor
Single-phase two-wire system	$V A=V \times A$	$\mathrm{Q}=\sqrt{\left((\mathrm{VA})^{2}-\mathrm{P}^{2}\right)}$	ミP/EVA (without using reactive power meter method)
Single-phase three-wire system	$\begin{aligned} & \mathrm{VAi}=\mathrm{Vi} \times \mathrm{Ai} \\ & \mathrm{i}=1,2 \\ & \mathrm{VA}=\mathrm{VA} 1+\mathrm{VA} 2 \end{aligned}$	$\begin{aligned} & \mathrm{Qi}=\sqrt{\left((\mathrm{VAi})^{2}-\mathrm{Pi}^{2}\right)} \\ & \mathrm{i}=1,2 \\ & \mathrm{ZQ}=\mathrm{Q} 1+\mathrm{Q} 2 \end{aligned}$	
Three-phase three-wire system	$\begin{aligned} & V A i=V i \times A i \\ & i=1,3 \\ & \Sigma V A=\sqrt{3} / 2(V A 1+V A 3) \end{aligned}$	$\begin{aligned} & \begin{array}{l} \mathrm{Qi}=\sqrt{\left((\mathrm{VAi})^{2}-\mathrm{Pi}^{2}\right)} \\ i=1,3 \\ \mathrm{i} Q \end{array}=\text { Q1+Q3 } \end{aligned}$	
Three-phase four-wire system	$\begin{gathered} \mathrm{VAi}=\mathrm{Vi} \times \mathrm{Ai} \\ \mathrm{i}=1,2,3 \\ \mathrm{EVA}=\mathrm{VA} 1+\mathrm{VA} 2+\mathrm{VA3} \end{gathered}$	$\begin{aligned} & \mathrm{Qi}=\sqrt{\left((\mathrm{VAi})^{2}-\mathrm{Pi}^{2}\right)} \\ & \mathrm{i}=1,2,3 \\ & \mathrm{LQ}=\mathrm{Q} 1+\mathrm{Q} 2+\mathrm{Q} 3 \end{aligned}$	
Three-phase four-wire system (2.5 element)	$\begin{aligned} & V A i=V i \times A i \\ & i=1,3 \\ & \Sigma V A=\sqrt{3} / 2(V A 1+V A 3) \end{aligned}$	$\begin{aligned} & \mathrm{Q}=\sqrt{\left(\sqrt{3} / 2(\mathrm{VAi})^{2}-\mathrm{Pi}^{2}\right)} \\ & \mathrm{i}=1,3 \\ & \mathrm{ZQ}=\mathrm{Q} 1+\mathrm{Q} 3 \end{aligned}$	

measuring instrument that uses a different measurement principle.

Mounting and Shape

Materials	Casing: polycarbonate resin (PC), UL94 V-0 Terminal block: polybutylene terephthalate (PBT), UL94 V-0
Terminal cover: polyamide resin (PA6), UL94 V-2	

Accessories

JIS/ANSI-mounting kit	1 set
DIN-mounting bracket	2
Dust cover (with a screw)	1
Terminal cover (with screws)	1
Shorting bar (for RS-485 communication termination)	1
Tag number label	2

Connection Diagrams

A phase and wire system can be selected by specifying the parameters.
If measurement input does not exceed 600 V AC or 5 A AC , direct input without using a VT or CT is possible. Do not ground the input circuit when a VT or CT is not used. Perform wiring for the voltage and current in the same circuit.

- Single-phase two-wire system

- Single-phase three-wire system

- Three-phase three-wire system

- Three-phase four-wire system

- Three-phase four-wire system (2.5 element)

External Dimensions

- ANSI 4-inch round form size (when a bezel is attached)

<Panel Cutout Dimensions>

Normal Allowable Deviation $= \pm($ Value of JIS B 0401-1999 tolerance grade IT18)/2

- DIN 96-square instrument size

<Panel Cutout Dimensions>

Normal Allowable Deviation $= \pm($ Value of JIS B 0401-1999 tolerance grade IT18)/2

[^0]: * Refer to "Demand alarm release" of the Digital Input Specifications.

