DIGITAL MULTIMETER

7555

Digital Multimeter

7555 (755501)
$213 \times 88 \times 379 \mathrm{~mm} \quad 3 \mathrm{~kg}$
$\left(8-3 / 8 \times 3-1 / 2 \times 11^{\prime \prime} 6.6 \mathrm{lbs}\right)$

The 7555 Digital Multimeter surpasses all other YOKOGAWA's DMMs to date. While maintaining the same user-friendly basic functions as the previous models, the 7555 multimeter's front panel has been redesigned for improved operability, with enlarged keys that are fewer in number. Frequently-used measuring items can also be operated using one-touch key actions. Equipped with communications functions and offering additional functions, such as a simple scanner function and a BCD output function, the multimeter is applicable to system use, such as automatic measurement, not to speak of bench use.

The multimeter's memory can store up to 2000 measured data items and ten types of setup information.

FEATURES

- 5-1/2 Digit Display "199999"
- High Speed Sampling 125 Times/Second
- Complete Communication Functions - Standard Provision of RS-232-C, and Optional Addition of GP-IB
- Large Current Measurement (DC 200 A, AC 150 A) (when Current Clamp is Used)
- Simple Scanner that Permits Multiple Point Measurement (Optional)
- BCD Output \& D/A Output Functions (Optional)

FUNCTIONS

- There are Six Measurement Items:

DC V, AC V, $\Omega 2 \mathrm{~W}, \Omega 4 \mathrm{~W}, \mathrm{DC} A$, and AC A.

- You Can Measure Large Currents Up to 200 A.

- BCD Output (Optional)

The measurement data (including decimal point, unit, polarity and over-range) is output in parallel form.
By combining the instrument with a programmable controller, you can use it on a production line, for example.

- D/A Output (Optional)

Any three-digit number in a row of the displayed data can be outputted in analogue with $\pm 1 \mathrm{~V}$ full scale.

- Simple Scanner (Optional)

Multi-points (up to 8 channels) DC V measurement is available with this scanner option.
It employs a photo MOS relay, resulting in extended operational life. A removable terminal block is used to simplify wiring.

SPECIFICATIONS

DC Voltage (DC V)

- Ranges

Range	Sampling SLOW / MID2 / MID1		Sampling FAST		Input Resistance	Max. Input (Hi-Lo)
	Max. Reading	Resolution	Max. Reading	Resolution		
200 mV	199.999	$1 \mu \mathrm{~V}$	199.99	$10 \mu \mathrm{~V}$	$>1 \mathrm{G} \Omega$	$\begin{aligned} & \pm 1000 \mathrm{~V} \text { PEAK (10s) } \\ & \pm 500 \mathrm{~V} \text { PEAK } \\ & \quad \text { (continuously) } \end{aligned}$
2000 mV	1999.99	$10 \mu \mathrm{~V}$	1999.9	$100 \mu \mathrm{~V}$		
20 V	19.9999	$100 \mu \mathrm{~V}$	19.999	1 mV	$\begin{gathered} 10 \mathrm{M} \Omega \\ \pm 1 \% \end{gathered}$	$\pm 1000 \mathrm{~V}$ PEAK (continuously)
200 V	199.999	1 mV	199.99	10 mV		
1000 V	1000.00	10 mV	1000.0	100 mV		

Accuracy (Sampling SLOW) : \pm (\% of reading + digits)

Range	$\mathbf{2 4 h}, \mathbf{2 3} \pm \mathbf{1}^{\mathbf{}} \mathbf{C}$	$\mathbf{9 0 d a y s , \mathbf { 2 3 } \pm \mathbf { 5 } ^ { \mathbf { } } \mathbf { C }}$	$\mathbf{1}$ year, $\mathbf{2 3} \pm \mathbf{5}^{\circ} \mathbf{C}$	Temperature Coefficient $\mathbf{5}$ to $\left.\mathbf{1 8 , 2} \mathbf{~ t o ~} \mathbf{4 0} \mathbf{o}^{\circ} \mathbf{C}\right)$
200 mV	$0.0055+6(6)$	$0.009+8(6)$	$0.012+8(6)$	$0.0011+1 \quad(0.4)$
2000 mV	$0.0045+3(5)$	$0.006+3(5)$	$0.009+3(5)$	$0.0009+0.5(0.3)$
20 V	$0.007+4(6)$	$0.0012+4(6)$	$0.02+4(6)$	$0.0012+0.5(0.3)$
200 V	$0.006+3(5)$	$0.011+3(5)$	$0.019+3(5)$	$0.0012+0.5(0.3)$
1000 V	$0.008+3(5)$	$0.013+3(5)$	$0.021+3(5)$	$0.0015+0.5(0.3)$

[^0]* The NULL function is used.
*When sampling MID2 is used, 1 is added to the value of digits of SLOW
* The number in parentheses is the value of digits in the case of sampling FAST
* Common mode rejection ratio: 120 dB or better

Normal mode rejection ratio: 60 dB or better
* Maximum allowable voltage between Lo and the case: $\pm 500 \mathrm{~V}$ PEAK

DC Current (DC A)

- Ranges

Range	Sampling SLOW / MID2 / MID1		Sampling FAST		Input Resistance
	Max. Reading	Resolution	Max. Reading	Resolution	
$2000 \mu \mathrm{~A}$	1999.99	10 nA	nA	$<11 \Omega$	
20 mA	19.9999	100 nA	19.999	$1 \mu \mathrm{~A}$	$<11 \Omega$
200 mA	199.999	$1 \mu \mathrm{~A}$	199.99	$10 \mu \mathrm{~A}$	$<0.3 \Omega$
2000 mA	1999.99	$10 \mu \mathrm{~A}$	1999.9	$100 \mu \mathrm{~A}$	$<0.3 \Omega$

- Accuracy (Sampling SLOW) : \pm (\% of reading + digits)

Range	$\mathbf{1}$ year, $\mathbf{2 3} \pm \mathbf{5}^{\circ} \mathbf{C}$
$2000 \mu \mathrm{~A}$	$0.06+100(100)$
20 mA	$0.06+20(20)$
200 mA	$0.12+80(20)$
2000 mA	$0.12+40(40)$

*When sampling MID2 is used, 10 is added to the value of digits * When sampling MID1 is used, 20 is added to the value of digits of SLOW.

* The number in parentheses is the value of digits in the case of sampling FAST.
* Temperature coefficient: $\pm(1 / 10$ of measurement accuracy $){ }^{\circ} \mathrm{C}$ * Allowable current: 2 A (built-in 2 A fuse)

DIGITAL MULTIMETER

YOKOGAWA
7555

- When current clamp (751106) is used

Range	Max. Reading	Resolution	Accuracy : $\pm \%$ of reading + digits)
200 A	199.9	100 mA	$2+10(\leq 150 \mathrm{~A})$
			$2.5+10(>150 \mathrm{~A})$

* The accuracy is the value over one year, at $23 \pm 5^{\circ} \mathrm{C}$, after zero adjustment.
* Temperature coefficient: $\pm 1 / 10$ of measurement accuracy) $/{ }^{\circ} \mathrm{C}$

Resistance (OHM)

- Ranges

Range	Sampling SLOW / MID2 / MID1		Sampling FAST		Current Through Unknown
	Max. Reading	Resolution	Max. Reading	Resolution	$10 \mathrm{~m} \Omega$
200Ω	199.999	$1 \mathrm{~m} \Omega$	199.99	mA	
2000Ω	1999.99	$10 \mathrm{~m} \Omega$	1999.9	$100 \mathrm{~m} \Omega$	1 mA
$20 \mathrm{k} \Omega$	19.9999	$100 \mathrm{~m} \Omega$	19.999	1Ω	$100 \mu \mathrm{~A}$
$200 \mathrm{k} \Omega$	199.999	1Ω	199.99	10Ω	25
$2000 \mathrm{k} \Omega$	1999.99	10Ω	1999.9	100Ω	$2.5 \mu \mathrm{~A}$
$20 \mathrm{M} \Omega$	19.9999	100Ω	-	-	250
$200 \mathrm{MA} \Omega$	199.99	$10 \mathrm{k} \Omega$	-		25 nA

Accuracy (4-wire system, Sampling SLOW): \pm (\% of reading + digits)

Range	$\mathbf{2 4} \mathbf{h}, \mathbf{2 3} \pm \mathbf{1}^{\circ} \mathbf{C}$	$\mathbf{9 0}$ days, $\mathbf{2 3} \pm \mathbf{5}^{\circ} \mathbf{C}$	$\mathbf{1}$ year, $\mathbf{2 3} \pm 5^{\circ} \mathbf{C}$	Temperature Coefficient $(5$ to $\mathbf{1 8 , 2 8} \mathbf{~ t o ~} \mathbf{4 0} \mathbf{C})$
200Ω	$0.008+6(6)$	$0.015+7(6)$	$0.019+7(6)$	$0.0021+1(1.5)$
2000Ω	$0.007+4(5)$	$0.012+6(5)$	$0.016+6(5)$	$0.0016+1(0.4)$
$20 \mathrm{k} \Omega$	$0.007+3(5)$	$0.012+5(5)$	$0.016+5(5)$	$0.0016+1(0.4)$
$200 \mathrm{k} \Omega$	$0.008+3(5)$	$0.013+5(5)$	$0.017+5(5)$	$0.0016+1(0.4)$
$2000 \mathrm{k} \Omega$	$0.03+15(20)$	$0.05+20(30)$	$0.05+20(30)$	$0.005+1(0.4)$
$20 \mathrm{M} \Omega$	$0.25+30$	$0.25+30$	$0.25+30$	$0.02+3$
$200 \mathrm{M} \Omega$	$2+20$	$2+20$	$2+20$	$0.05+5$

* The $24 \mathrm{~h}, 23 \pm 1^{\circ} \mathrm{C}$ accuracy
* The NULL function is used.
, NULL function is used.
*When sampling MID2 is used, 1 is added to the value of digits of SLOW. 3 is added to the value of digits of SLOW
* When sampling MID1 is used, 3 is added to the value of digits of SLOW.
* The number in parentheses is the value of digits in the case of sampling FAST
* The accuracy in the case of the 2 -wire method is the same as that of the 4 -wire method.

However, $4 \mathrm{~m} \Omega /{ }^{\circ} \mathrm{C}$ is added to the temperature coefficient.

* Excludes the effect of the lead wires.
* Open temperature voltage: Max. 12.5 V
* Open temperature voltage: Max. 12.5 V
* Max. input: ± 300 V PEAK (between Hi and Lo, between SENSE Hi and SENSE Lo)
* Response time: Until the reading falls within the specified accuracy
$2000 \mathrm{k} \Omega / 20 \mathrm{M} \Omega$ range Within 0.4 seconds
$200 \mathrm{M} \Omega$ range Within 5 seconds

AC Voltage (AC V)

Ranges

Range	Sampling SLOW / MID2 / MID1		Input Resistance	$\begin{gathered} \text { Max. } \\ \text { Input (Hi-Lo) } \end{gathered}$
	Max. Reading	Resolution		
200 mV	199.999	$1 \mu \mathrm{~V}$	$\begin{aligned} & 1 \mathrm{M} \Omega \pm 2 \% \\ & \text { Approx. } \\ & 150 \mathrm{pF} \end{aligned}$	700 Vrms or ± 1000 V PEAK less than $10^{7} \mathrm{~V} \cdot \mathrm{~Hz}$
2000 mV	1999.99	$10 \mu \mathrm{~V}$		
20 V	19.9999	$100 \mu \mathrm{~V}$		
200 V	199.999	1 mV		
700 V	1000.00	10 mV		

- Accuracy (Sampling SLOW): \pm (\% of reading + digits), 1 year, $23 \pm 5^{\circ} \mathrm{C}$

Range	$\mathbf{2 0}$ to $\mathbf{3 0} \mathbf{~ H z}$	$\mathbf{3 0}$ to $\mathbf{4 5} \mathbf{~ H z}$	$\mathbf{4 5} \mathbf{~ H z}$ to $\mathbf{1 0 k H z}$	$\mathbf{1 0}$ to $\mathbf{2 0} \mathbf{~ k H z}$	$\mathbf{2 0}$ to $\mathbf{5 0} \mathbf{~ k H z}$	$\mathbf{5 0}$ to $\mathbf{1 0 0} \mathbf{~ k H z}$
200 mV	$0.9+250$	$0.5+250$	$0.4+250$	$0.5+300$	$0.8+500$	$2+500$
2000 mV	$0.8+100$	$0.4+100$	$0.2+100$	$0.4+200$	$0.6+500$	$2+500$
20 V	$0.8+100$	$0.4+100$	$0.2+100$	$0.4+200$	$0.6+500$	$2+500$
200 V	$1+100$	$0.4+100$	$0.3+100$	$0.4+200$	$0.8+500$	$3+500$
700 V	$1+100$	$0.4+100$	$0.4+100$	$0.6+300$		

* When sampling MID2 is used, 10 is added to the value of digits of SLOW.
* AC coupling: True RMS value measurement method 20 is added digits of SLOW.
* AC coupling: True RMS value measurement method
* Response time: Until the reading falls within $\pm 0.2 \%$ of the final value Within 400 ms
* Crest factor: 3 at full scale (For 700 V range: 2 at full scale)
* Temperature coefficient: $\pm(1 / 10$ of the measurement accuracy $) /{ }^{\circ} \mathrm{C}$
$*$ Maximum allowable voltage between Lo and the case: $\pm 500 \mathrm{~V}$ PEAK

AC Current (AC A)

Ranges

Range	Sampling SLOW / MID2 / MID1		Input Resistance $\mathbf{(5 0 ~ H z})$
	Max. Reading	Resolution	$<11 \Omega$
$2000 \mu \mathrm{~A}$	1999.99	10 nA	$<11 \Omega$
20 mA	19.9999	100 nA	$<11 \Omega$
200 mA	199.999	$1 \mu \mathrm{~A}$	$<0.3 \Omega$
2000 mA	1999.99	$10 \mu \mathrm{~A}$	$<0.3 \Omega$

- Accuracy (Sampling SLOW): \pm (\% of reading + digits), 1 year, $23 \pm 5^{\circ} \mathrm{C}$

Range	$\mathbf{2 0}$ to $\mathbf{3 0 H z}$	$\mathbf{3 0}$ to $\mathbf{4 5 H z}$	$\mathbf{4 5 H z}$ to $\mathbf{2 k H z}$	$\mathbf{2}$ to $\mathbf{5 k H z}$
$2000 \mu \mathrm{~A}$	$1.5+350$	$0.8+300$	$0.5+300$	$0.8+300$
20 mA	$1.3+300$	$0.8+200$	$0.5+200$	$0.8+200$
200 mA	$1.3+300$	$0.8+300$	$0.5+300$	$0.8+300$
2000 mA	$1.5+300$	$1.5+200$	$1+200$	$1.5+200$

* When sampling MID2 is used, 10 is added to the value of digits of SLOW.

When sampling MID1 is used, 20 is added to the value of digits of SLOW.

* AC coupling: True RMS value measurement method
* Input: Sinusoidal waveform of between 5 and 100% of the range
* Response time: Until the reading falls within $\pm 0.2 \%$ of the final value Within 400 ms

Crest factor. 3 at full scale
Temperature coefficient: $\pm(1 / 10$ of the measurement accuracy $) /{ }^{\circ} \mathrm{C}$
Maximum allowable current: 2 A (built-in 2 A fuse)

- When current clamp (751106) is used.

Range	Max. Reading	Resolution	Accuracy : \pm (\% of reading + digits)
150 A	150.0	100 mA	$2+10$

* The accuracy is the value over one year, at $23 \pm 5^{\circ} \mathrm{C}$, after zero adjustment.
* 40 to 500 Hz
${ }^{*}$ Temperature coefficient: $\pm(1 / 10$ of measurement accuracy $) /{ }^{\circ} \mathrm{C}$

Communication Functions

* RS-232-C interface (standard provision)

Transmission method: Start-stop synchronization
Transmission speed: 75, 150, 300, 600, 1200, 2400, 4800, 9600 bits/s
Handshake mode, baud rate, number of bits, and header can be set to ON or OFF

* GP-IB interface (option)

Electrical and mechanical specifications
Conforms to IEEE ST'd 488-1978
(Conforms to IEEE ST'd 488.2-1987)
Functional specifications: SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT1, C0C Address mode, address, and header can be set to ON or OFF.

Sampling

	Sampling Speed	Integrating Time
SLOW	$2 / \mathrm{s}$	200 ms
MID2	$4 / \mathrm{s}$	100 ms
MID1	$20 / \mathrm{s}$	20 or 16.67 ms
FAST	$50 / \mathrm{s}(125 / \mathrm{s})$	2 ms

* When MID1 is used, $20 \mathrm{~ms}(50 \mathrm{~Hz})$ or $16.66 \mathrm{~ms}(60 \mathrm{~Hz})$ is automatically selected according to the supply voltage frequency.
In the case of AC voltage and AC current measurement, MID1 is activated when FAST is selected.
* In the 20 M and $200 \mathrm{M} \Omega$ range, MID2 is activated when FAST or MID1 is selected.

General Specifications

Operating principle:	Feedback Pulse Width Modulation method
Sample mode:	Auto/Single
Sampling rate:	Four modes of SLOW, MID2, MID1, and FAST are available.
Maximum reading:	199999
Over-range information:	-oL- sign display
Data memory:	Up to 2000 items of measurement data and also 10 kinds of setup information can be saved.
Operating temperature:	5 to $40^{\circ} \mathrm{C}$
Humidity:	20 to 80\% RH
Power requirements:	100 V AC (90 to $110 \mathrm{~V} \mathrm{AC)}$, 120 V AC (108 to 132 V AC) 230 V AC (207 to 253 V AC) 50 or 60 Hz
Storage temperature:	-5 to $50^{\circ} \mathrm{C}$
Power consumption:	20 VA max.
Warmup Time:	Approx. 60 minutes (until all specifications are satisfied)
Dimensions:	Approx. 213 (W) $\times 88(\mathrm{H}) \times 350$ (D) mm
Weight:	Approx. 3 kg

DIGITAL MULTIMETER

OKOGAWA

Optional Specifications

GP-IB:	See Communications Functions above. Simple scanner: Maximum tolerable voltage: 2 -wire (Available for DC voltage measurement only) channetween Hi and Lo terminals, 30 V between chans housing
Channel number is displayed on the front panel.	

Standard Accessories

Power supply cord : 1 piece
Measurement lead : 1 piece
Fuse 2A (FAST) : 1 piece
Remote connector : 1 piece
Instruction manual : 1 copy

AVAILABLE MODELS

Model	Suffix Code	Description
755501		5.5 digits DV C, DC A, OHM, AC V, AC A
Power requrements	-1	100 V AC (50 or 60 Hz)
	-4	120 V AC (50 or 60 Hz)
	-7	$230 \mathrm{~V} \mathrm{AC} \mathrm{(} 50$ or 60 Hz)
Power Cord	-D	UL, CSA standard
	-F	VDE standard
	-R	AS standard
	-Q	BS standard
Option	/CI	GP-IB Interface
	/KI	Scanner
	/D2	D/A output +BCD output

* You cannot incorporate both /K1 and /D2 optional specifications at the same time.
/C1,/K1 and /D2 optional specifications must be specified at the time of ordering (incorporated at the factory).

- Optional Accessories

No.	Name	Code	Description
1	Current clamp*	751106	$\begin{aligned} & \text { DC } 0 \text { to } 200 \mathrm{~A}, \\ & \text { AC } 0 \text { to } 150 \mathrm{~A}(40 \text { to } 500 \mathrm{~Hz}) \end{aligned}$
-	Terminal 16PT	A1460JT	for scanner option
-	Rack mounting kit	751533-E2	EIA (single mounting)
-	Rack mounting kit	751534-E2	EIA (double mounting)
-	Rack mounting kit	751533-J2	JIS (single mounting)
-	Rack mounting kit	751534-J2	JIS (double mounting)
-	Conversion connector	366971	RS-232-C conversion connector
-	4-wire resistance measuring lead	751510	0.6 m
2	Measurement Lead set	758917	0.75 m
3	Banana plug set	758919	$\phi 4 \mathrm{~mm}$ Plug / $\phi 4 \mathrm{~mm}$ socket
-	Banana conversion adapter	758920	$\phi 2 \mathrm{~mm}$ Plug / $\phi 4 \mathrm{~mm}$ socket
-	Fork Terminal adapter set	758921	Fork terminal / $\phi 4 \mathrm{~mm}$ socket
4	Alligator clip adapter set	758922	Alligator dip / $\phi 4 \mathrm{~mm}$ socket
5	Clamp adapter set	758923	Clamp / $\phi 4 \mathrm{~mm}$ socket
6	BNC conversion adapter	758924	BNC / 4 mm socket (+,-)
7	Safety adapter	758925	Conductor part: gold plated

*Current clamp (751106) is supported by Yokogawa M\&C Corporation

2

3
只

5

6

7

DIMENSIONS

Unit : mm (inch)

[^0]: * The $24 \mathrm{~h}, 23 \pm 1^{\circ} \mathrm{C}$ accuracy is the value with respect to the calibration standard.

